首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7581篇
  免费   811篇
  国内免费   1118篇
  2024年   13篇
  2023年   121篇
  2022年   193篇
  2021年   458篇
  2020年   358篇
  2019年   429篇
  2018年   382篇
  2017年   308篇
  2016年   405篇
  2015年   575篇
  2014年   668篇
  2013年   640篇
  2012年   760篇
  2011年   617篇
  2010年   415篇
  2009年   352篇
  2008年   361篇
  2007年   286篇
  2006年   264篇
  2005年   230篇
  2004年   233篇
  2003年   211篇
  2002年   199篇
  2001年   123篇
  2000年   99篇
  1999年   92篇
  1998年   46篇
  1997年   41篇
  1996年   33篇
  1995年   33篇
  1994年   36篇
  1993年   28篇
  1992年   60篇
  1991年   43篇
  1990年   51篇
  1989年   45篇
  1988年   29篇
  1987年   31篇
  1986年   31篇
  1985年   28篇
  1984年   27篇
  1983年   19篇
  1982年   11篇
  1980年   14篇
  1979年   8篇
  1977年   10篇
  1972年   11篇
  1971年   10篇
  1970年   9篇
  1969年   10篇
排序方式: 共有9510条查询结果,搜索用时 15 毫秒
101.
The regulation of tissue kallikrein activity by plasma serine proteinase inhibitors (serpins) was investigated by measuring the association rate constants of six tissue-kallikrein family members isolated from the rat submandibular gland, with rat kallikrein-binding protein (rKBP) and alpha 1-proteinase inhibitor (alpha 1-PI). Both these serpins inhibited kallikreins rK2, rK7, rK8, rK9 and rK10 with association rate constants in the 10(3)-10(4) M-1.s-1 range, whereas only 'true' tissue kallikrein rK1 was not susceptible to alpha 1-PI. This results in slow inhibition of rK1 by plasma serpins, which could explain why this kallikrein is the only member of the gene family identified so far that induces a transient decrease in blood pressure when injected in minute amounts into the circulation.  相似文献   
102.
In order to determine the effect of calcium mobilization on mitogen-activated protein (MAP) kinase activation, we have treated human foreskin fibroblasts (HSWP cells) and human epidermal carcinoma (A431) cells with thapsigargin. Intracellular free calcium was monitored by single cell image analysis using fura-2 and correlated with MAP kinase stimulation as assessed by immunoprecipitation, kinase renaturation assays and immunoblotting. Thapsigargin stimulated the 44- and 42-kDa MAP kinase isozymes in both cell types with kinetics that were slightly delayed relative to enzyme stimulated by epidermal growth factor. Removal of external calcium did not significantly affect the activation of the MAP kinases by thapsigargin, indicating that intracellular calcium mobilization is sufficient to stimulate the enzymes. However, treatment of cells with EGTA under conditions which deplete both intra- and extracellular calcium inhibited stimulation by thapsigargin but not epidermal growth factor. Stimulation of the MAP kinases by the calcium ionophore ionomycin paralleled the activation observed with thapsigargin in both calcium-containing and calcium-free conditions. These results indicate that there are at least two independent pathways for stimulation of MAP kinase: one that is dependent on intracellular calcium mobilization, and one that is mediated by the tyrosine kinase epidermal growth factor receptor and is calcium-independent.  相似文献   
103.
A novel human tissue kallikrein inhibitor designated as kallistatin has been purified from plasma to apparent homogeneity by polyethylene glycol fractionation and successive chromatography on heparin-Agarose, DEAE-Sepharose, hydroxylapatite, and phenyl-Superose columns. A purification factor of 4350 was achieved with a yield of approximately 1.35 mg per liter of plasma. The purified inhibitor migrates as a single band with an apparent molecular mass of 58 kDa when analyzed on SDS-polyacrylamide gel electrophoresis under reducing conditions. It is an acidic protein with pI values ranging from 4.6 to 5.2. No immunological cross-reactivity was found by Western blot analyses between kallistatin and other serpins. Kallistatin inhibits human tissue kallikrein's activity toward kininogen and tripeptide substrates. The second-order reaction rate constant (ka) was determined to be 2.6 x 10(4) M-1 s-1 using Pro-Phe-Arg-MCA. The inhibition is accompanied by formation of an equimolar, heat- and SDS-stable complex between tissue kallikrein and kallistatin, and by generation of a small carboxyl-terminal fragment from the inhibitor due to cleavage at the reactive site by tissue kallikrein. Heparin blocks kallistatin's complex formation with tissue kallikrein and abolishes its inhibitory effect on tissue kallikrein's activity. The amino-terminal residue of kallistatin is blocked. Sequence analysis of the carboxyl-terminal fragment generated from kallistatin reveals the reactive center sequence from P1' to P15', which shares sequence similarity with, but is different from known serpins including protein C inhibitor, alpha 1-antitrypsin, and alpha 1-antichymotrypsin. The results show that kallistatin is a new member of the serpin superfamily that inhibits human tissue kallikrein.  相似文献   
104.
We studied the effects of arachidonic acid (AA) on Cl secretion across primary cultures of dog tracheal epithelium. Cell sheets showed mean values for baseline short-circuit current (Isc) and transepithelial resistance of 33.8 muA/cm2 and 360 omega.cm2 (n = 44). AA (5 x 10(-5) M) added to both sides increased Isc by 27.8 +/- 5.2 muA/cm2 (mean +/- SE, n = 8), and elevated intracellular cAMP levels. In the presence of 5 x 10(-6) M of both indomethacin (INDO) and nordihydroguaiaretic acid (NDGA) (inhibitors of cyclooxygenase and lipoxygenase, respectively), AA reduced Isc by 4.4 +/- 0.6 muA/cm2 (n = 10) without changing cAMP. Both INDO and NDGA were necessary to abolish the Isc increase in response to AA. The effects of AA on Isc were unaffected by amiloride. In the presence of INDO and NDGA, isoproterenol (ISO) raised cAMP and increased Isc by 27.6 +/- 4.3 (transient) and 12.8 +/- 3.2 muA/cm2 (sustained) (n = 9). With AA present as well as INDO and NDGA, the transient and sustained responses to ISO were significantly reduced to 13.2 +/- 2.4 and 3.9 +/- 0.8 muA/cm2 (n = 10), respectively; the increase in cAMP was unaltered. AA approximately halved baseline efflux of 125I from confluent cell sheets in high K medium and reduced the isoproterenol-induced increase in efflux to 20% of control. These data are consistent with the reported inhibitory effect of AA on apical membrane chloride channels.  相似文献   
105.
106.
107.
The nerve growth factor (NGF) receptor is a glycosylated transmembrane protein present on the cell surface as both high and low affinity forms, but biological responsiveness requires interactions of NGF with the high affinity site. We have tested the effects of mutations in the intracellular domain of the receptor upon its cell surface expression and equilibrium binding of 125I-NGF. Although mutant receptors lacking the entire cytoplasmic domain are processed and expressed at the cell surface and are capable of binding to NGF, the absence of cytoplasmic sequences leads to a loss of high affinity binding and to a lack of an appropriate cross-linking pattern as assessed by N-hydroxysuccinimidyl 4-azidobenzoate photoaffinity cross-linking. These results, taken together with the highly conserved nature of these cytoplasmic sequences, implies that the interaction of the receptor with an accessory molecule is necessary to form the high affinity receptor.  相似文献   
108.
The domain structures of the Escherichia coli Rep and Helicase II proteins and their ligand-dependent conformational changes have been examined by monitoring the sensitivity of these helicases to proteolysis by trypsin and chymotrypsin. Limited treatment of unliganded Rep protein (73 kDa) with trypsin results in cleavage at a single site in its carboxyl-terminal region, producing a 68-kDa polypeptide which is stabilized in the presence of ATP, ADP, or adenosine 5'-O-thiotriphosphate) (ATP gamma S). The purified 68-kDa Rep tryptic polypeptide retains single-stranded (ss) DNA binding, DNA unwinding (helicase), and full ATPase activities. When bound to ssDNA, the Rep protein can be cleaved by trypsin at an additional site in its carboxyl-terminal region, producing a 58-kDa polypeptide that also retains ssDNA binding and ATPase activities. This 58-kDa Rep tryptic polypeptide can also be produced by further tryptic treatment of the 68-kDa Rep tryptic polypeptide when the latter is bound to ssDNA. This 58-kDa polypeptide displays a lower affinity for ssDNA indicating that the 10-kDa carboxyl-terminal peptide facilitates Rep protein binding to ssDNA. The 58-kDa Rep tryptic polypeptide is also stabilized in the presence of nucleotides. Based on these and previous studies that showed that the 68-kDa Rep tryptic polypeptide cannot support DNA replication in a system that is dependent upon the phi X174 cis-A protein (Arai, N. & Kornberg, A. (1981) J. Biol. Chem. 256, 5294-5298), we conclude that the carboxyl-terminal end (approximately 5 kDa) of the Rep protein is not required for its helicase or ATPase activities. However, we suggest that this region of the Rep protein is important for its interactions with the phi X174 cis-A protein. Limited treatment of unliganded Helicase II protein (82 kDa) with chymotrypsin results in cleavage after Tyr254, producing a 29-kDa amino-terminal polypeptide and a 53-kDa carboxyl-terminal polypeptide, which remain associated under nondenaturing conditions. This chymotrypsin cleavage reduces the ssDNA binding activity and eliminates the ssDNA-dependent ATPase and helicase activities of the Helicase II protein. The binding of ATP, ADP, ATP gamma S, and/or DNA to Helicase II protein results in protection of this site (Tyr254) from cleavage by chymotrypsin. Limited treatment of Helicase II protein with trypsin results in cleavage near its carboxyl-terminal end producing two polypeptides with apparent Mr = 72,000, in a manner similar to that observed with the Rep protein; these polypeptides are also stabilized by binding ATP or single-stranded DNA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
109.
Hepatic catabolism of lipoproteins containing apolipoproteins B or E is enhanced in rats treated with pharmacologic doses of 17 alpha-ethinyl estradiol. Liver membranes prepared from these rats exhibit an increased number of receptor sites that bind 125I-labeled human low density lipoproteins (LDL) in vitro. In the present studies, this estradiol-stimulated hepatic receptor was shown to recognize the following rat lipoproteins: LDL, very low density lipoproteins obtained from liver perfusates (hepatic VLDL), and VLDL-remnants prepared by intravenous injection of hepatic VLDL into functionally eviscerated rats. The receptor also recognized synthetic lamellar complexes of lecithin and rat apoprotein E as well as canine high density lipoproteins containing apoprotein E (apo E-HDLc). It did not recognize human HDL or rat HDL deficient in apoprotein E. Much smaller amounts of this high affinity binding site were also found on liver membranes from untreated rats, the number of such sites increasing more than 10-fold after the animals were treated with estradiol. Each of the rat lipoproteins recognized by this receptor was taken up more rapidly by perfused livers from estrogen-treated rats. In addition, enrichment of hepatic VLDL with C-apoproteins lowered the ability of these lipoproteins to bind to the estradiol-stimulated receptor and diminished their rate of uptake by the perfused liver of estrogen-treated rats, just as it did in normal rats. The current data indicate that under the influence of pharmacologic doses of estradiol the liver of the rat contains increased amounts of a functional lipoprotein receptor that binds lipoproteins containing apoproteins B and E. This hepatic lipoprotein receptor appears to mediate the uptake and degradation of lipoproteins by the normal liver as well as the liver of estradiol-treated rats. The hepatic receptor bears a close functional resemblance to the LDL receptor previously characterized on extrahepatic cells.  相似文献   
110.
Cytoplasmic calcium levels are believed to be important in blood platelet activation. Upon activation, the discrete marginal microtubule band, which maintains the discoid shape of non-activated platelets, becomes disrupted. Present studies demonstrate that the extent of assembly of the marginal microtubule band is related to cytoplasmic calcium levels. The divalent cationophore, A23187, causes platelet aggregation, secretion, and contraction by promoting calcium transport from intraplatelet storage sites into the cytoplasm. A23187 caused disassembly of platelet microtubules. Quantitation of electron micrographs revealed that numbers of microtubules were reduced by approximately 80% after A23187 treatment. Secondly, assembled microtubules in homogenates of platelets, in which microtubules were stabilized prior to homogenization, were decreased in favor of free tubulin in A23187-treated platelets. Thirdly, A23187 increased 14C-colchicine binding by intact platelets; this also indicated a shift in the microtubule subunit equilibrium to favor free, colchicine-binding tubulin subunits. In control experiments, A23187 did not affect the stability of platelet tubulin, the colchicine binding reaction, or the total tubulin content of platelets. Stimulation of colchicine binding depended on A23187 concentration (0.05-0.5 microM) and did not require extracellular calcium. A23187-stimulation of colchicine binding was blocked by dibutyryl cyclic AMP (0.80 mM) and/or 3-isobutyl-1-methylxanthine (50 microM) and by indomethacin (10 microM). Cyclic AMP or indomethacin also interferes with A23187-induced platelet activation, but indomethacin is not likely to completely inhibit the perturbation of intraplatelet calcium gradients by A23187. It is suggested that A23187-induced microtubule disassembly may be an indirect effect of calcium on microtubules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号